Abstract
Epileptic seizures are the manifestation of hypersynchronous and excessive neuronal excitation. While the glutamatergic and GABAergic neurons play major roles in shaping fast neuronal excitation/inhibition homeostasis, it is well illustrated that astrocytes profoundly regulate neuronal excitation by controlling glutamate, GABA, cannabinoids, adenosine, and concentration of K+ around neurons. However, little is known about whether microglia take part in the regulation of acute neuronal excitation and ongoing epileptic behaviors. We proposed that if microglia are innately ready to respond to epileptic overexcitation, depletion of microglia might alter neuronal excitability and severity of acute epileptic seizures. We found that microglia depletion by plx3397, an inhibitor of CSF1R, exacerbates seizure severity and excitotoxicity-induced neuronal degeneration, indicating that microglia are rapidly responsive to the change of excitation/inhibition homeostasis and participate in the protection of neurons from overexcitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.