Abstract

BackgroundMicroglia-driven cerebral spreading inflammation is a key contributor to secondary brain injury after SAH. Genetic depletion or deactivation of microglia has been shown to ameliorate neuronal cell death. Therefore, clinically feasible anti-inflammatory approaches counteracting microglia accumulation or activation are interesting targets for SAH treatment. Here, we tested two different methods of interference with microglia-driven cerebral inflammation in a murine SAH model: (i) inflammatory preconditioning and (ii) pharmacological deactivation.Methods7T-MRI-controlled SAH was induced by endovascular perforation in four groups of C57Bl/6 mice: (i) Sham-operation, (ii) SAH naïve, (iii) SAH followed by inflammatory preconditioning (LPS intraperitoneally), and (iv) SAH followed by pharmacological microglia deactivation (colony-stimulating factor-1 receptor-antagonist PLX3397 intraperitoneally). Microglia accumulation and neuronal cell death (immuno-fluorescence), as well as activation status (RT-PCR for inflammation-associated molecules from isolated microglia) were recorded at day 4 and 14. Toll-like receptor4 (TLR4) status was analyzed using FACS.ResultsFollowing SAH, significant cerebral spreading inflammation occurred. Microglia accumulation and pro-inflammatory gene expression were accompanied by neuronal cell death with a maximum on day 14 after SAH. Inflammatory preconditioning as well as PLX3397-treatment resulted in significantly reduced microglia accumulation and activation as well as neuronal cell death. TLR4 surface expression in preconditioned animals was diminished as a sign for receptor activation and internalization.ConclusionsMicroglia-driven cerebral spreading inflammation following SAH contributes to secondary brain injury. Two microglia-focused treatment strategies, (i) inflammatory preconditioning with LPS and (ii) pharmacological deactivation with PLX3397, led to significant reduction of neuronal cell death. Increased internalization of inflammation-driving TLR4 after preconditioning leaves less receptor molecules on the cell surface, providing a probable explanation for significantly reduced microglia activation. Our findings support microglia-focused treatment strategies to overcome secondary brain injury after SAH. Delayed inflammation onset provides a valuable clinical window of opportunity.

Highlights

  • Aneurysmal subarachnoid hemorrhage (SAH) leads to devastating outcomes, resulting in severe neurological deficits for survivors [1].Many different factors contributing to brain injury after SAH have been identified for the early and for the late phase

  • Microglia-driven cerebral spreading inflammation following SAH contributes to secondary brain injury

  • Two microglia-focused treatment strategies, (i) inflammatory preconditioning with LPS and (ii) pharmacological deactivation with PLX3397, led to significant reduction of neuronal cell death

Read more

Summary

Introduction

Aneurysmal subarachnoid hemorrhage (SAH) leads to devastating outcomes, resulting in severe neurological deficits for survivors [1].Many different factors contributing to brain injury after SAH have been identified for the early and for the late phase. Secondary brain injury describes a number of pathologies that occur in the later course of SAH, leading to additional brain damage like cortical spreading depolarization, cerebral vasospasm, or post hemorrhagic hydrocephalus [1, 4, 5]. Cerebral spreading inflammation after SAH has been described previously by our group and others. Microglia accumulate within the brain tissue between day 4 and 14 after SAH and inflict additional neuronal cell death [6, 12, 13]. Microglia-driven cerebral spreading inflammation is a key contributor to secondary brain injury after SAH. We tested two different methods of interference with microglia-driven cerebral inflammation in a murine SAH model: (i) inflammatory preconditioning and (ii) pharmacological deactivation

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call