Abstract

BackgroundKnowledge of geography is integral to the study of insect-borne infectious disease such as malaria. This study was designed to evaluate whether geographic parameters are associated with malarial infection in the East Sepik province of Papua New Guinea (PNG), a remote area where malaria is a major cause of morbidity and mortality.MethodsA global positioning system (GPS) unit was used at each village to collect elevation, latitude and longitude data. Concurrently, a sketch map of each village was generated and the villages were sub-divided into regions of roughly equal populations. Blood samples were taken from subjects in each region using filter paper collection. The samples were later processed using nested PCR for qualitative determination of malarial infection. The area was mapped using the GPS-information and overlaid with prevalence data. Data tables were examined using traditional chi square statistical techniques. A logistic regression analysis was then used to determine the significance of geographic risk factors including, elevation, distance from administrative centre and village of residence.ResultsThree hundred and thirty-two samples were included (24% of the total estimated population). Ninety-six were positive, yielding a prevalence of 29%. Chi square testing within each village found a non-random distribution of cases across sub-regions (p < 0.05). Multivariate logistic regression techniques suggested malarial infection changed with elevation (OR = 0.64 per 10 m, p < 0.05) and distance from administrative centre (OR = 1.3 per 100 m, p < 0.05).ConclusionThese results suggest that malarial infection is significantly and independently associated with lower elevation and greater distance from administrative centre in a rural area in PNG. This type of analysis can provide information that may be used to target specific areas in developing countries for malaria prevention and treatment.

Highlights

  • Knowledge of geography is integral to the study of insect-borne infectious disease such as malaria

  • Macrogeographic trends in disease prevalence have been recognized; as an extreme example, malaria in man is endemic in sub-Saharan Africa, but is

  • According to the Köppen climate classification system, the region is classified as tropical rain forest (Af) and annually has up to seven meters of rainfall[4,4]

Read more

Summary

Introduction

Knowledge of geography is integral to the study of insect-borne infectious disease such as malaria. Knowledge of geography is integral to the study of disease within populations This is true for insectborne diseases, such as malaria, because transmission depends on an interaction with a vector that has a limited geographical range. As malaria endemicity is common in remote, un-mapped, impoverished areas, which lack street addresses and even basic census information, the scientific analysis of these microgeographic trends has been historically limited. Newer technologies such as detailed satellite imagery, hand-held geographic position sensing devices, and computerized geographic information systems, are making this analysis possible

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call