Abstract
Microgels are an emerging class of "ideal" enzyme carriers because of their chemical and process stability, biocompatibility, and high enzyme loading capability. In this work, we synthesized a new type of permanently positively charged poly(N-vinylcaprolactam) (PVCL) microgel with 1-vinyl-3-methylimidazolium (quaternization of nitrogen by methylation of N-vinylimidazole moieties) as a comonomer (PVCL/VimQ) through precipitation polymerization. The PVCL/VimQ microgels were characterized with respect to their size, charge, swelling degree, and temperature responsiveness in aqueous solutions. P450 monooxygenases are usually challenging to immobilize, and often, high activity losses occur after the immobilization (in the case of P450 BM3 from Bacillus megaterium up to 100% loss of activity). The electrostatic immobilization of P450 BM3 in permanently positively charged PVCL/VimQ microgels was achieved without the loss of catalytic activity at the pH optimum of P450 BM3 (pH 8; ∼9.4 nmol 7-hydroxy-3-carboxy coumarin ethyl ester/min for free and immobilized P450 BM3); the resulting P450-microgel systems were termed P450 MicroGelzymes (P450 μ-Gelzymes). In addition, P450 μ-Gelzymes offer the possibility of reversible ionic strength-triggered release and re-entrapment of the biocatalyst in processes (e.g., for catalyst reuse). Finally, a characterization of the potential of P450 μ-Gelzymes to provide resistance against cosolvents (acetonitrile, dimethyl sulfoxide, and 2-propanol) was performed to evaluate the biocatalytic application potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.