Abstract

Extracellular adenosine plays a key role in promoting bone tissue formation. Local delivery of adenosine could be an effective therapeutic strategy to harness the beneficial effect of extracellular adenosine on bone tissue formation following injury. Herein, we describe the development of an injectable in situ curing scaffold containing microgel-based adenosine delivery units. The two-component scaffold includes adenosine-loaded microgels and functionalized hyaluronic acid (HA) molecules. The microgels were generated upon copolymerization of 3-acrylamidophenylboronic acid (3-APBA)- and 2-aminoethylmethacrylamide (2-AEMA)-conjugated HA (HA-AEMA) in an emulsion suspension. The PBA functional groups were used to load the adenosine molecules. Mixing of the microgels with the HA polymers containing clickable groups, dibenzocyclooctyne (DBCO) and azide (HA-DBCO and HA-Azide), resulted in a 3D scaffold embedded with adenosine delivery units. Application of the in situ curing scaffolds containing adenosine-loaded microgels following tibial fracture injury showed improved bone tissue healing in a mouse model as demonstrated by the reduced callus size, higher bone volume, and increased tissue mineral density compared to those treated with the scaffold without adenosine. Overall, our results suggest that local delivery of adenosine could potentially be an effective strategy to promote bone tissue repair.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.