Abstract
This paper presents a microgap multicavity Fabry-Perot interferometric sensor fabricated by wet etching and fusion splicing of single-mode optical fibers. The temperature dependence of the optical thickness measurement of self-assembled thin films can be compensated by extracting the temperature information from the multiplexed temperature sensor. Experimental results demonstrate that thin-film characteristics under temperature variations can be examined accurately. The high-temperature sensitivity of the temperature sensor also enables biosensing under temperature variations. This greatly improves the flexibility in sample handling and provides the opportunity to investigate temperature effects in biological applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.