Abstract

Quantitative cell and organelle dynamics of the male gamete-producing lineage of Plumbago zeylanica were examined using serial transmission electron microscopic reconstruction at five stages of development from generative cell inception to sperm cell maturity. The founder population of generative cell organelles includes an average of 3.88 plastids, 54.9 mitochondria, and 3.7 vacuoles. During development the volume of the pollen grain increases from 6,200 μm3 in early microspores to 115,000 μm3 at anthesis, cell volume of the male germ lineage decreases more than 67% from 362.3 μm3 to 118.4 μm3. By the time the generative cell separates from the intine, plastid numbers increase by >600%, mitochondria by 250%, and vesicles by 43 times. A cellular projection elongates toward and establishes an association with the vegetative nucleus; this leading edge contains plastids and numerous mitochondria. When the generative cell completes its separation from the intine, organellar polarity is reversed and plastids migrate to the opposite pole of the cell. Cytoplasmic microtubules are common in association with cellular organelles. Plastids accumulate at the distal end of the cell as a linked mass, apparently adhered by lateral electron dense regions. Before division of the highly polarized generative cell, plastids decrease in number by 16%, whereas mitochondria increase by ∼90% and vacuoles increase by ∼140% from the prior stage. After mitosis, the resultant sperm cells differ in size and organelle content. The sperm cell associated with the vegetative nucleus (Svn) contains 62.7% of the cytoplasm volume, 87% of the mitochondria, 280.4 vesicles (79% of those in the generative cell), and 0.6% of the plastids. At maturity, the Svn mitochondria increase by 31% and the cell contains an average of 0.4 plastids, 158.9 vesicles, and 0.36 microbodies. The mature unassociated sperm (Sua) contains 39.8 mitochondria (up 3.3%), 24.3 plastids (down 31%), 91.1 vesicles (up 54.9%), and 3.18 microbodies. The small number of organelles initially in the generative cell, followed by their rapid multiplication in a shrinking cytoplasm suggests a highly competitive cytoplasmic environment that would tend to eliminate residual organellar heterogeneity. Cell and cytoplasmic volumes vary as a consequence of fluctuations in the number and size of large vesicles or vacuoles, as well as loss of cytoplasmic volume by (1) formation of “false cells” involving amitotic cytokinesis, (2) “pinching off” of cytoplasm, and (3) dehydration of pollen contents prior to anthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call