Abstract

The purpose of this study was to assess the variability of the microfracture technique when performed by experienced knee arthroscopy surgeons. Four surgeons were each asked to perform microfracture on six preformed cartilage defects in fresh human cadaveric knees. Surgeons were instructed on penetration depth, inter-hole distance, and to place the holes perpendicular to the subchondral surface. Micro-computed tomography was used to calculate depth error, inter-hole distance error, and deviation of penetration angles from the perpendicular. All surgeons misjudged depth and inter-hole distance, tending to make microfracture holes too deep (depth error 1.1mm±1.9) and too close together (inter-hole distance error: -0.8mm±0.4). Fifty-one per cent of holes were angled more than 10° from the perpendicular (range 2.6°-19.8°). Both depth and distance errors were significantly lower in the trochlear groove than on the femoral condyle (p<0.05). Surface shearing was associated with both penetration depth >4mm and angles >20°. Inter-hole infraction occurred in holes closer than 2.5mm to each other. Even experienced knee arthroscopy surgeons demonstrate inconsistency in surgical technique when performing microfracture. While further research will be required to demonstrate that these variations in surgical technique are associated with poorer clinical outcomes after microfracture, surgeons should attempt to minimizing such variations in order to prevent surface shearing and inter-hole infraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.