Abstract

Microfouling studies with the emphasis on microalgae (Bacillariophyceae) were carried out on test blocks of steel-making slag in comparison with concrete. Two types of slag test blocks, with and without fly-ash as an additional source of silica, and concrete test blocks of size 75 × 26 × 26 mm were used to study microfouling build-up for a period of 30 d, with intermittent samplings after 1, 2, 3, 7,14 and 21 d. The species composition, cell density, biomass and surface pH of the test pieces were determined, in addition to the hydrographic parameters of the water column. Microfouling studies showed higher numbers of algal species as well as a greater cell density on the slag than on the concrete blocks. This was true with respect to biomass measured as dry weight also. Colonization was significantly delayed in the case of concrete. Navicula spp. and Nitzschia spp. were the initial colonizers on all three types of substrata and were the dominant genera throughout the study period. While the number of species increased, several disappeared after colonization, as a part of community build-up. The surface pH of the slag blocks was near neutral, whilst that of the concrete was highly alkaline during the initial period of exposure. This alkaline surface reduced the rate of species colonization on the concrete blocks initially. The study showed severe biofouling on the slag blocks compared to concrete and thus they were considered an environmentally benign construction material for land protection. The use of slag as the construction material for land protection would greatly reduce the expense compared to concrete.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call