Abstract

Micro total analysis system, likewise named “lab on a chip”, integrates sequentially analytical processes such as pre-treatment, separation, and detection of samples in a single microfluidic device. Microfluidics-based analysis systems have witnessed significant developments in applications of many research fields (e.g., chemistry, physics, and medicine) over the last two decades, becoming increasingly popular in recent years (Whitesides, 2006). Its popularity mainly stems from the advantages of microfluidics, including portability, low cost, easy operation, low consumption of samples and reagents, short reaction time, and function integration. The integrated microfluidic devices perform rapid and reproducible measurements on small sample volumes while eliminating the need for labor-intensive and potentially error-prone laboratory manipulations. Of note, the microfluidic technique has begun to play an increasingly important role in research and discovery of cell biology and tissue engineering (El-Ali et al., 2006; Wang et al., 2009). Microfluidic technology enables the study of cell behaviour and activity from singleto multi-cellular organism level with precisely localised application of experimental conditions; this is almost unattainable with the use of common macroscopic tools (e.g., microplate and Petri dish). For example, the effect of laminar flow on the micron-scale enables spatial control of liquid composition, fast change of media and temperature, and single cell handling and analysis (Takayama et al., 2001). Meanwhile, microfluidic devices can realise biological experiments in a high-throughput way, while being based on the miniaturising macroscopic systems and taking advantage of massive parallel processing. Thus far, microfluidic applications have been involved in many experimental parts of cell manipulation and analysis, such as cell trapping/sorting, cell culture/co-culture, cytotoxicity, PCR, DNA sequencing, and gene analyses (VelveCasquillas et al., 2010; Wlodkowic et al., 2009; Melin et al., 2007). Furthermore, a large number of novel microfluidic devices have been reported for cell research and tissue simulation in last 10 years (Ho et al., 2006; Huh et al., 2010; Sung et al., 2011). According to various functional applications of microfluidic devices, we provide a discussion on general processes and overview of microfluidics-based cultivation of cells,

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.