Abstract

AbstractSol–gel templating of titania thin films with the amphiphilic diblock copolymer poly(dimethyl siloxane)‐block‐methyl methacrylate poly(ethylene oxide) is combined with microfluidic technology to control the structure formation. Due to the laminar flow conditions in the microfluidic cell, a better control of the local composition of the reactive fluid is achieved. The resulting titania films exhibit mesopores and macropores, as determined with scanning electron microscopy, X‐ray reflectivity, and grazing incidence small angle X‐ray scattering. The titania morphology has three features that are beneficial for application in photovoltaics: 1) a large surface‐to‐volume ratio important for charge generation with disordered hexagonally arranged mesopores of 25 nm size and a film porosity of up to 0.79, 2) enhanced light scattering that enables the absorption of more light, and 3) a dense titania layer with a thickness of about 6 nm at the substrate (bottom electrode) to prevent short circuits. An optical characterization complements the structural investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call