Abstract
Severe burns result in T lymphocyte specific immunologic changes. In addition to decreased levels of circulating lymphocytes, changes in cytokine secretion and receptor expression also take place. Our finer understanding of the inflammatory response has led to the development of immune-targeted therapeutics, requiring specialized gene-expression monitoring. The emerging field of bio-micro-electromechanical systems can be used to isolate highly pure T lymphocytes in a clinically relevant and timely manner for downstream genomic analysis. Blood samples from healthy volunteers and burn-injured patients were introduced into microfluidic devices developed in our laboratory. Utilizing cell-affinity chromatography for positive selection of T lymphocytes, the devices served as a platform for RNA extraction and downstream cytokine analysis via quantitative real-time polymerase chain reaction (PCR). From a 0.5-mL whole blood sample, the microfluidic devices captured highly pure T lymphocytes from healthy volunteers and burn-injured patients. Cell capture was of sufficient quantity, and extracted RNA was of sufficient quality, for evaluating the gene expression of cytokines: interferon-gamma, interleukin-2, interleukin-4, and interleukin-10. Microfluidics is a useful tool in processing blood from burn-injured patients. Though in its very early stages of development, cell-specific information obtained by this platform/technology will likely be an important component of near-patient molecular diagnostics and personalized medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.