Abstract
Population-level analysis masks significant heterogeneity between individual cells, making it difficult to accurately reflect the true intricacies of life activities. Microfluidics is a technique that can manipulate individual cells effectively and is commonly coupled with a variety of analytical methods for single-cell analysis. Single-cell omics provides abundant molecular information at the single-cell level, fundamentally revealing differences in cell types and biological states among cell individuals, leading to a deeper understanding of cellular phenotypes and life activities. Herein, this work summarizes the microfluidic chips designed for single-cell isolation, manipulation, trapping, screening, and sorting, including droplet microfluidic chips, microwell arrays, hydrodynamic microfluidic chips, and microchips with microvalves. This work further reviews the studies on single-cell proteomics, metabolomics, lipidomics, and multi-omics based on microfluidics and mass spectrometry. Finally, the challenges and future application of single-cell multi-omics are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.