Abstract
Fluorescence in situ hybridization (FISH) is one of the recommended techniques for human epidermal growth factor receptor 2 (HER2) status assessment on cancer tissues. Here we develop microfluidics-assisted FISH (MA-FISH), in which hybridization of the FISH probes with their target DNA strands is obtained by applying square-wave oscillatory flows of diluted probe solutions in a thin microfluidic chamber of 5 μl volume. By optimizing the experimental parameters, MA-FISH decreases the consumption of the expensive probe solution by a factor 5 with respect to the standard technique, and reduces the hybridization time to 4 h, which is four times faster than in the standard protocol. To validate the method, we blindly conducted HER2 MA-FISH on 51 formalin-fixed paraffin-embedded tissue slides of 17 breast cancer samples, and compared the results with standard HER2 FISH testing. HER2 status classification was determined according to published guidelines, based on average number of HER2 copies per cell and average HER2/CEP17 ratio. Excellent agreement was observed between the two methods, supporting the validity of MA-FISH and further promoting its short hybridization time and reduced reagent consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.