Abstract
Microfluidics represent a quality sperm selection technique. Human couples fail to conceive and this is so in a significant population of animals worldwide. Defects in male counterpart lead to failure of conception so are outcomes of assisted reproduction affected by quality of sperm. Microfluidics, deals with minute volumes (μL) of liquids run in small-scale microchannel networks in the form of laminar flow streamlines. Microfluidic sperm selection designs have been developed in chip formats, mimicking invivo situations. Here sperms are selected and analyzed based on motility and sperm behavioral properties. Compared to conventional sperm selection methods, this selection method enables to produce high-quality motile sperm cells possessing non-damaged or least damaged DNA, achieve greater success of insemination in bovines, and achieve enhanced pregnancy rates and live births in assisted reproduction-in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). Besides, the concentration of sperm available to oocyte can be controlled by regulating the flow rate in microfluidic chips. The challenges in this technology are commercialization of chips, development of fully functional species-specific microfluidic tools, limited number of studies available in literature, and need of thorough understanding in reproductive physiology of domestic animals. In conclusion, incorporation of microfluidic system in assisted reproduction for sperm selection may promise a great success in IVF and ICSI outcomes. Future prospectives are to make this technology more superior and need to modify chip designs which is cost effective and species specific and ready for commercialization. Comprehensive studies in animal species are needed to be carried out for wider application of microfluidic sperm selection in invitro procedures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.