Abstract

This communication presents a novel concept of microfluidically frequency-reconfigurable self-quadruplexing tunable antenna for quad-band applications. At the initial design stage, a substrate-integrated square cavity is divided into four unequal quarter-mode cavity resonators by inserting an X-shaped slot on the top surface of the cavity. Applying four 50-Ω microstrip feed-lines to these four quarter-mode cavity resonators enables quad-band operation with self-quadruplexing capabilities. The feed lines are organized orthogonally and off-center, which leads to port isolation greater than 32.3 dB. An equivalent network model is developed to validate the proposed antenna. To realize frequency reconfigurability, two microfluidic channels corresponding to each port are created by engraving the bottom surface of the cavity. To create a reconfigurable self-quadruplexing antenna, the channels are either filled with air or dielectric liquids of higher permittivity, so that the design offers independent tunability of the operating frequencies. As a proof of concept, the prototype of a self-quadruplexing tunable antenna is fabricated and validated through measurements. The antenna prototype occupies a footprint area of 0.37λg2. The design exhibits frequency tuning ranges of 350 MHz (8.3%), 500 MHz (10.3%), 610 MHz (11.2%), and 845 MHz (14.1%) for the first, second, third, and fourth operating bands, respectively. In all bands and across the entire tuning range, the realized gains of the designed antenna exceed 4.05 dBi. The electromagnetic modeling responses agree extremely well with the measured characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call