Abstract

Fluid flow at the microscale level exhibits a unique phenomenon that can be explored to fabricate microfluidic devices integrated with components that can perform various biological functions. In this manuscript, the importance of physics for microscale fluid dynamics using microfluidic devices has been reviewed. Microfluidic devices provide new opportunities with regard to spatial and temporal control over cell growth. Furthermore, the manuscript presents an overview of cellular stimuli observed by combining surfaces that mimic the complex biochemistries and different geometries of the extracellular matrix, with microfluidic channels regulating the transport of fluids, soluble factors, etc. We have also explained the concept of mechanotransduction, which defines the relation between mechanical force and biological response. Furthermore, the manipulation of cellular microenvironments by the use of microfluidic systems has been highlighted as a useful device for basic cell biology research activities. Finally, the article focuses on highly integrated microfluidic platforms that exhibit immense potential for biomedical and pharmaceutical research as robust and portable point-of-care diagnostic devices for the assessment of clinical samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call