Abstract

Quite often, important cellular events occur in environments that are either not amenable to implanted sensors or other types of molecular probes. In such cases, a viable alternative to taking the sensor or probe to the biological sample of interest is to bring the sample of interest out of its natural environment to one that is more conducive to the measurement scheme. The disadvantage of the latter approach is that the sample may not behave in the same manner in vitro as it does in vivo, or that the agonists and other stimuli to which the sample is subjected to in vivo are no longer present. In this Tutorial Review, the authors attempt to provide some guidance, based on their own experiences and those of other scientists, to performing cellular measurements in a quantitative manner under in vitro conditions. Due to the expansive literature on analyses involving cells, the authors have limited this Tutorial Review to those methods involving microfluidic technologies, both in microbore tubing and in microfabricated channels. Initial reports of analyses involving cells in microbore tubing were first reported nearly two decades ago, while those in microfabricated fluidic devices appeared over a decade ago. However, more recently, the complexity of cell analyses using fabricated microfluidic devices (as opposed to microbore tubing) has increased due in part to the improvements in fabrication technologies, fluid handling and delivery capabilities, advances in coatings of the channels within the microfluidic device, and integrated detection schemes. Examples of cellular analyses in microbore tubing and in fabricated microfluidic devices will be given, as well as associated advantages and challenges. Finally, the authors' thoughts on cellular analyses are presented here using the classical steps in an analysis as a guide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call