Abstract
This research addresses a critical issue in modern microelectronics, which arises from increased miniaturization and heat generation, necessitating effective temperature control. The study focuses on pulsatile heat pipes, offering a passive and highly efficient heat transfer solution by utilizing fluid and vapor phases within a closed capillary channel. To enhance temperature regulation, microfluidics are employed with integrated separation barriers to improve capacity and efficiency. Altering the flow pattern of liquid and vapor plugs through droplet generation may enhance thermal performance. The study demonstrates the accuracy of the heat transport model through mathematical and empirical data comparison, achieving a remarkable 90.9% accuracy and efficiency. Pulsatile flows, especially in microfluidic systems, exhibit advantages over steady flows, promising avenues for future physics-based research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.