Abstract

We present a microfluidic cell plate for endocrine disrupting chemicals (EDCs) detection, like estrogenic activity, in waterish solution. This platform technology consists of four independent micro flow units made of polydimethylsiloxane (PDMS) and glass, which enables a selective detection of up to four species of the EDCs per one-way chip containing the corresponding immobilized receptor. The concept of the detection is based on direct fluorescence analysis. In order to found out the electrical parameters of the microfluidic system electroluminescence (EL) measurements as a function of the concentration of the QD800 dye were investigated. Finally, the microfluidic device was attached to the flow control system. Different edge filters were tested in order to attenuate the MOSLED light signal and to maximize the QD800 dye signal at 800nm which works best for a 780nm edge filter. Measurements using an integrated photo diode as detector were performed to point out the relationship between the dark and photo current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call