Abstract

We report the use of microfluidic surface titrations (MSTs) for studying electroactive self-assembled monolayers (eSAMs) and other thin films. The technique of MST utilizes a microfluidic generation-collection dual channel electrode (DCE) configuration to quantify the charge associated with electroactive thin films that might or might not be in direct contact with an electrode surface. This technique allows for quantitative measurement of surface coverages, Γ, as low as 30 pmol cm-2 for electrodeposited Cu thin films. Additionally, we show that it is possible to quantify Γ for ferrocene (Fc)-terminated alkylthiols in mixed-monolayer eSAMs. Interestingly, MSTs sometimes reveal a two-fold higher eSAM concentration compared to direct electrochemical measurements. This finding suggests that in these instances not all the constituent Fc-moieties of the eSAM are in sufficiently close proximity to the surface to be addressable via direct electrochemistry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.