Abstract
We present three-dimensional microfluidic structures with integrated optical fibers, mirrors and electrodes for flow cytometric analysis of blood cells. Ultraprecision milling technique was used to fabricate different flow cells featuring single-stage and two-stage cascaded hydrodynamic focusing of particles by a sheath flow. Two dimensional focussing of the sample fluid was proven by fluorescence imaging in horizontal and vertical directions and found to agree satisfactorily with finite element calculations. Focussing of the sample stream down to 5 microm at a particle velocity of 3 m s(-1) is accessible while maintaining stable operation for sample flow rates of up to 20 microL min(-1). In addition to fluorescence imaging, the micro-flow cells were characterised by measurements of pulse shapes and pulse height distributions of monodisperse microspheres. We demonstrated practical use of the microstructures for cell differentiation employing light scatter to distinguish platelets and red blood cells. Furthermore, T-helper lymphocytes labelled by monoclonal antibodies were identified by measuring side scatter and fluorescence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.