Abstract
The isolation of single cells and their further cultivation in confined chambers are essential to the collection of statistically reliable temporal information in cell-based biological experiments. In this work, we present a hydrodynamic single-cell trapping and culturing platform that facilitates biological analysis and experimentation of virus infection into host cells. To find the optimum design of the cell trap at the microscale, we evaluated hook traps with different widths and trap intervals to obtain a high trapping efficiency of a single cell. The proposed design leverages the stochastic position of the cells as they flow into the structured microfluidic channels, where hundreds of single cells are then arrayed in nanoliter chambers for simultaneous cell-specific data collection. Optimum design is used to devise and implement a hydrodynamic cell-trapping mechanism that is minimally detrimental to the cell viability and retains a high trapping efficiency (90%), with the capability of reaching high fill factors (90%) in short loading times (10 min) in a 450-trap device. Finally, we perform an analysis of host-viral interactions under the treatment of a drug concentration gradient as a proof of concept.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.