Abstract

AbstractThe discovery of photoacoustic laser streaming has opened up a new avenue to manipulate and drive fluids with light, but the necessity of an in situ “launch pad” has limited its utility in real‐world microfluidic applications due to both the size constraint and the complexity of fabrication. Here, it is demonstrated that 1) a versatile microfluidic pump can be materialized by using laser streaming from an optical fiber, and 2) laser streaming can be generated from a flat metal surface without any fabrication process. In the latter case, by focusing laser on the tip of a sewing needle tip, the needle can be turned into a micropump with controllable flow direction. Additionally, high‐speed imaging of the fluid motion and computational fluid dynamics simulations to confirm the photoacoustic principle of laser streaming are employed, and it is revealed that the streaming direction is determined by the direction of strongest intensity in the divergent ultrasound wavefront. Finally, the potential of laser streaming for microfluidic and optofluidic applications is demonstrated by successfully driving fluid inside a capillary tube.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call