Abstract

Microfluidic technologies allow the generation of large datasets using smaller quantities of cells and reagents than with traditional well plate assays. Such miniaturized methods can also facilitate the generation of complex 3D preclinical models of solid tumors with controlled size and cell composition. This is particularly useful in the context of recreating the tumor microenvironment for preclinical screening of immunotherapies and combination therapies at a scale, to reduce the experimental costs during therapy development while using physiologically relevant 3D tumor models, and to assess the therapy's efficacy. Here, we describe the fabrication of microfluidic devices and the associated protocols to culture tumor-stromal spheroids for assessing the efficacy of anticancer immunotherapies as monotherapies and as part of combination therapy regimes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call