Abstract

Biomolecular patterning is essential for the creation of sensing motifs that rely on receptor-ligand binding for selectivity. Microfluidic devices have the potential to aid in the development of simple, robust methods for biomolecular patterning and therefore contribute to the generation of protein, DNA, and cell microarrays. In microfluidic patterning, the choice of both substrate and microfluidic channel material is essential for control of both the receptor binding for maximal signal generation as well as non-specific adsorption that acts as chemical noise. In this study, polystyrene, glass, silicon nitride, and poly(dimethylsiloxane) (PDMS) were evaluated as substrates for protein patterning using two types of PDMS microchannels for patterning, native PDMS and solvent-extracted PDMS (E-PDMS). E-PDMS microfluidic channels resulted in better patterning characteristics than native PDMS channels as determined by a higher fluorescence intensity of immobilized protein on all substrate types tested. Microfluidic patterning was then applied to perform two- and four-layer immunoassays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.