Abstract

Efficient manufacture of electroactive vertically-oriented nanosheets with enhanced electrolyte mass diffusion and strong interfacial redox dynamics is critical for realizing high energy density of miniature supercapacitor (SC), but still challenging. Herein, microfluidic droplet printing is developed to controllably construct vertically-oriented graphene/ZIF-67 hetero-microsphere (VAGS/ZIF-67), where the ZIF-67 is coordinately grown on vertically-oriented graphene framework via Co─O─C bonds. The VAGS/ZIF-67 shows ordered porous channel, high electroactivity and strong interfacial interaction, providing rapid electrolyte diffusion dynamics and high faradaic capacitance in KOH solution (1674 F g-1 , 1004 C g-1 ), which are verified by computational fluid dynamics (CFD) and density functional theory (DFT). Moreover, the VAGS/ZIF-67 based SC exhibits large energy density (100Wh kg-1 ), excellent durability (10000 cycles and high/low temperature), and robust power-supply applications in portable electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.