Abstract

Current encapsulation approaches control the number of particles encapsulated per droplet, but not the particle types; consequently, they are unable to generate droplets containing combinations of distinct particle types, limiting the reactions that can be performed. We describe a microfluidic particle zipper that allows the number and types of particles encapsulated in every droplet to be controlled. The approach exploits self-ordering to generate repeating particle patterns that allow controlled encapsulation in droplets. We use the method to combine barcode particles with gel encapsulated cells to profile multiple disease relevant genomic loci with single cell sequencing. Particle zippers can operate in series to generate complex particle compositions in droplets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.