Abstract

Microfluidic networks (μFNs) are passive (self-filling) devices incorporating microchannels for guiding minute volumes of fluids over surfaces. μFNs can be employed to localize the deposition of proteins from aqueous solutions onto substrates, for example. The walls of the channels must be hydrophilic for this purpose and should ideally resist the adsorption of proteins. We made μFNs using poly(dimethylsiloxane) (PDMS), Si/SiO2, and Au-covered Si and derivatized them with poly(ethylene glycol)s (PEGs) to fulfill both of these requirements. The grafting of the PEG molecules is optimized for either type of μFN: the networks from PDMS and silicon are derivatized using PEG-silanes and the Au-coated networks are derivatized with a thiolated PEG. Additionally, the zones of the Au-covered Si μFNs separating the channels are selectively covered with a hydrophobic thiol using microcontact printing. X-ray photoelectron spectroscopy and contact angle measurements indicate that all grafted layers have the expected c...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.