Abstract

Herein, we demonstrate a method for simultaneously quantifying the electric and magnetic properties of liquid systems confined within a capillary. This is based upon an optimized perturbation of a microwave-frequency coaxial resonator, chosen to maximize the spatial separation of the two fields and to minimize the depolarization of the liquid. A capillary is passed through the center of the resonator so the sample occupies either maximum electric field (zero magnetic field) or maximum magnetic field (zero electric field) depending on whether an odd or even TEM mode is interrogated. This allows electric and magnetic effects to be distinguished at multiple discrete frequencies. We demonstrate this capability through the quantification of varying ionic content of saline solutions, which interact with both the electric and magnetic fields via several polarization mechanisms. The distinction of different cations and anions is also demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.