Abstract

HypothesisSince macroemulsions tend to break down to lower free energy, they hardly retain their initial drop state. Therefore, studies are being conducted to overcome this based on advanced interface engineering techniques, but it is still challenging. Herein we hypothesize that the stability of giant droplets can be secured without chemical bonding through the interfacial coacervation of polyelectrolyte and associative nanoplatelets. ExperimentsWe synthesized associative silica nanoplates (ASNPs) via polypeptide-templated silicification and consecutive wettability adjustment. To produce monodisperse macrodroplets, the inner fluid containing partially positively charged ASNPs and the outer fluid dissolving negatively charged polyacrylic acid (PAA) were coflowed through a capillary-based microfluidic channel. FindingsDynamic interfacial tension and interfacial rheology measurements revealed that the migration of ASNPs and PAA from each phase to the interface led to the formation of a complex bilayered thin membrane with an enhanced interfacial modulus. In addition, we demonstrated that adjusting the surface properties of ASNPs by coupling a fluorochemical enabled the production of monodisperse fluorocarbon-in-oil-in-water double macroemulsions. These results highlighted the applicability of our microfluidics-based interfacial coacervation technology in the development of complex fluid products with visual differentiation and drug encapsulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.