Abstract

Increasing evidence demonstrates that mammals have different reactions to hypoxia with varied oxygen dynamic patterns. It takes ∼24h for tri-gas incubator to achieve steady cell hypoxia, which fails to recapitulate ultrafast oxygen dynamics of intestinal ischemia/reperfusion (IR) injury. Inspired from the structure of native intestinal villi, we engineered an intestinal organoid chip embedded with engineered artificial microvessels based on co-axial microfluidic technology by using pH-responsive ZIF-8/sodium alginate scaffold. The chip was featured on: (i) eight times the oxygen exchange efficiency compared with the conventional device, tri-gas incubator, (ii) implantation of intestinal organoid reproducing all types of intestinal epithelial cells, and (iii) bio-responsiveness to hypoxia and reoxygenation (HR) by presenting metabolism disorder, inflammatory reaction, and cell apoptosis. Strikingly, it was found for the first time that Olfactomedin 4 (Olfm4) was the most significantly down-regulated gene under a rapid HR condition by sequencing the RNA from the organoids. Mechanistically, OLFM4 played protective functions on HR-induced cell inflammation and tissue damage by inhibiting the NF-kappa B signaling activation, thus it could be used as a therapeutic target. Altogether, this study overcomes the issue of mismatched oxygen dynamics between in vitro and in vivo, and sets an example of next-generation multisystem-interactive organoid chip for finding precise therapeutic targets of IR injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.