Abstract

Being able to precisely characterize the mechanical properties of soft microparticles is essential for numerous situations, from the understanding of the flow of biological fluids to the development of soft micro-robots. Here, we present a simple measurement technique for determining Poisson’s ratio of soft micron-sized hydrogels in the presence of a surrounding liquid. This method relies on the measurement of the deformation, in two orthogonal directions, of a rectangular hydrogel slab compressed uni-axially inside a microfluidic channel. Due to the in situ character of the method, the sample does not need to be dried, allowing for the measurement of the mechanical properties of swollen hydrogels. Using this method, we determined Poisson’s ratio of hydrogel particles composed of polyethylene glycol (PEG) and varying solvents fabricated using a lithography technique. The results demonstrate, with high precision, the dependence of the hydrogel compressibility on the solvent fraction and character. The method is easy to implement and can be adapted for the measurement of a variety of soft and biological materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.