Abstract

Wound healing is a complex physiological process involving four coordinated stages, including hemostasis, anti-inflammatory, repair, and epithelial formation. Herein, multifunctional core-shell alkylated chitosan/calcium alginate microfibers are fabricated as a novel strategy for promoting wound healing by contributing to each four stages in the entire healing process. Taking advantages of the microfluidic technology, the core-shell microfibers can be generated in a continuous and convenient manner through the interfacial assembly between alkylated chitosan and Na-alginate, as well as the simultaneous crosslink between calcium and the alginate. Generated microfibers possess unique internal structure which can effectively promote the absorption of blood and exudate produced during trauma. Moreover, the dodecyl carbon chain and abundant amino groups of alkylated chitosan provide microfibers with excellent hemostatic and antibacterial properties, which can repair acute hemorrhage and destroy bacteria rapidly. Further, the chronic wound healing process of a skin injury model can be significantly promoted by applying the fabricated microfibers. With these sequential functions to guide the whole-stage wound healing, the presented multifunctional core-shell microfibers create a versatile and robust paradigm for comprehensive wound treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.