Abstract

Here, we reported particles with approximately 80-μm diameter with phase-separated morphology of ternary polymer blends containing poly(4-butyltriphenylamine) (PBTPA), poly(methyl methacrylate) (PMMA), and PBTPA-b-PMMA fabricated via a microfluidic emulsification technique with a Y-shaped microreactor followed by a solvent evaporation. Addition of block copolymer changed the macroscopic structure from core-shell to Janus and more complicated sea-island type with the increase of the block copolymer content. The Janus structure with a PMMA hemisphere containing small PBTPA domain was observed at 10 wt% of the block copolymer. Meanwhile, the rapid evaporation changed the morphology macroscopically from the Janus to the undeveloped one where PMMA-rich phase mainly located at center sandwiched with outside PBTPA phases, suggesting that morphologies are governed by the kinetical factors together with the conventionally accepted thermodynamic ones. After the solvent annealing with toluene, distinct and enlarged PMMA phase appeared radiately, of which size gradiently decreased from the surface to the center (200–500 nm) in each particle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.