Abstract

Current microfluidic assays, which aim at quantifying mechanical properties of sickle cell red blood cells (SS-RBCs), suffer from a number of drawbacks in functionalization and flow control. Specifically, physical adsorption functionalization techniques produce inconsistent functional surfaces, and common volumetric flow pumps cannot be used to adjust the flow inside microchannels with minimal delay. We have designed an experimental setup that alleviates these complications by implementing aspiration for microchannel assembly that enables the use of most functionalization techniques and a pressure controller that allows instant and precise changes in the microchannel flow. Utilizing this setup, we have quantified SS-RBC adhesion to the integrin αvβ3, a specific adhesion protein expressed on the endothelium, as well as measured the shear modulus and viscosity of the SS-RBC plasma membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.