Abstract

Stacking of microfluidic fuel cells and redox batteries may cause internal current losses and reduced performance compared to single cells. In the present work, these internal current losses are investigated experimentally for an array of two microfluidic vanadium redox batteries based on flow-through porous electrodes. A unique cell array design is proposed, having two pairs of flow-through electrodes situated in a single co-laminar flow manifold. The two electrochemical cells are connected electrically in series and have series fluidic connection through the electrolyte in order to reuse the partially consumed reactants from the first, upstream cell in the second, downstream cell. The cell array prototype demonstrates a maximum power output of 9 mW and a maximum current of 13.5 mA. However, current losses up to 1.75 mA are observed at open circuit, which is attributed to reactant discharge through a parasitic cross-cell comprising of one electrode from each electrochemical cell in the shared manifold. This current loss, appearing in the form of a shunt current, is shown to be proportional to the cell potential. The drop in coulombic efficiency is calculated to quantify the effect of the shunt current. Recommendations for mitigation of shunt current in microfluidic cell arrays are provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call