Abstract
Controlling droplet sizes is one of the most important aspects of droplet generators used in biomedical research, drug discovery, high-throughput screening, and emulsion manufacturing applications. This is usually achieved by using multiple devices that are restricted in their range of generated droplet sizes. In this paper, a co-flow microfluidic droplet-generation device with flexible walls was developed such that the width of the continuous (C)-phase channel around the dispersed (D)-phase droplet-generating needle can be adjusted on demand. This actuation mechanism allowed for the adjustment of the C-phase flow velocity, hence providing modulated viscous forces to manipulate droplet sizes in a single device. Two distinct droplet-generation regimes were observed at low D-phase Weber numbers, i.e., a dripping regime at high- and medium-channel widths and a plug regime at low-channel widths. The effect of channel width on droplet size was investigated in the dripping regime under three modes of constant C-phase flow rate, velocity, and Capillary number. Reducing the channel width at a constant C-phase flow rate had the most pronounced effect on producing smaller droplets. This effect can be attributed to the combined influences of the wall effect and increased C-phase velocity, leading to a greater impact on droplet size due to the intensified viscous force. Droplet sizes in the range of 175-913 µm were generated; this range was ~2.5 times wider than the state of the art, notably using a single microfluidic device. Lastly, an empirical model based on Buckingham's Pi theorem was developed to predict the size of droplets based on channel width and height as well as the C-phase Capillary and Reynolds numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.