Abstract

Liver is composed of various kinds of cells, including hepatic parenchymal cells (hepatocytes) and nonparenchymal cells, and separation of these cells is essential for cellular therapies and pharmacological and metabolic studies. Here, we present microfluidic devices for purely hydrodynamic and size-dependent separation of liver cells, which utilize hydrodynamic filtration. By continuously introducing cell suspension into a microchannel with multiple side-branch channels, cells smaller than a specific size are removed from the mainstream, while large cells are focused onto a sidewall in the microchannel and then separated into two or three groups. Two types of PDMS-glass hybrid microdevices were fabricated, and rat liver cells were successfully separated. Also, cell size, morphology, viability and several cell functions were analyzed, and the separation performances of the microfluidic devices were compared to that of a conventional centrifugal technique. The results showed that the presented microfluidic devices are low-cost and suitable for clinical use, and capable of highly functional separation with relatively high-speed processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.