Abstract
Zebrafish or Danio rerio is an established model organism for studying the genetic, neuronal and behavioral bases of diseases and for toxicology and drug screening. The embryonic and larval stages of zebrafish have been used extensively in fundamental and applied research due to advantages offered such as body transparency, small size, low cost of cultivation and high genetic homology with humans. However, the manual experimental methods used for handling and investigating this organism are limited due to their low throughput, labor intensiveness and inaccuracy in delivering external stimuli to the zebrafish while quantifying various neuronal and behavioral responses. Microfluidic and lab-on-a-chip devices have emerged as ideal technologies to overcome these challenges. In this review paper, the current microfluidic approaches for investigation of behavior and neurobiology of zebrafish at embryonic and larval stages will be reviewed. Our focus will be to provide an overview of the microfluidic methods used to manipulate (deliver and orient), immobilize and expose or inject zebrafish embryos or larvae, followed by quantification of their responses in terms of neuron activities and movement. We will also provide our opinion in terms of the direction that the field of zebrafish microfluidics is heading toward in the area of biomedical engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.