Abstract

Dielectrophoretic devices are capable of the detection and manipulation of cancer cells in a label-free, cost-effective, robust, and accurate manner using the principle of the polarization of the cancer cells in the sample volume by applying an external electric field. This article demonstrates how a microfluidic platform can be utilized for high-throughput continuous sorting of non-metastatic breast cancer cells (MCF-7) and non-tumor breast epithelial cells (MCF-10A) using hydrodynamic dielectrophoresis (HDEP) from the cell mixture. By generating an electric field between two electrodes placed side-by-side with a micron-sized gap between them in an HDEP microfluidic chip, non-tumor breast epithelial cells (MCF-10A) can be pushed away, exhibiting negative DEP inside the main channel, while the non-metastatic breast cancer cells follow their course unaffected when suspended in cell medium due to having conductivity higher than the membrane conductivity. To demonstrate this concept, simulations were performed for different values of medium conductivity, and the sorting of cells was studied. A parametric study was carried out, and a suitable cell mixture conductivity was found to be 0.4 S/m. By keeping the medium conductivity fixed, an adequate AC frequency of 0.8 MHz was established, giving maximum sorting efficiency, by varying the electric field frequency. Using the demonstrated method, after choosing the appropriate cell mixture suspension medium conductivity and frequency of the applied AC, maximum sorting efficiency can be achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call