Abstract

This article provides the design and fabrication details of a new technique to build a microfluidic device with two parallel substrates and a silicone gasket. The fabrication process uses screen printing technology offering fast and low-cost microdevices without the need for high-cost fabrication equipment and special photoresist processes. Hermetic microfluidic channels of 300 µm width and 50 µm height having parallel facing electrodes on two substrates are made with simple serigraphy technique using silicone rubber. The fabricated devices were experimentally tested for detection and characterization of polystyrene particles and living cells by negative and positive dielectrophoresis. The reported technique enables simple manipulation, centering, detection and characterization of living cells at low and high frequencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call