Abstract

Current nano-LC/MS systems require the use of an enrichment column, a separation column, a nanospray tip, and the fittings needed to connect these parts together. In this paper, we present a microfabricated approach to nano-LC, which integrates these components on a single LC chip, eliminating the need for conventional LC connections. The chip was fabricated by laminating polyimide films with laser-ablated channels, ports, and frit structures. The enrichment and separation columns were packed using conventional reversed-phase chromatography particles. A face-seal rotary valve provided a means for switching between sample loading and separation configurations with minimum dead and delay volumes while allowing high-pressure operation. The LC chip and valve assembly were mounted within a custom electrospray source on an ion-trap mass spectrometer. The overall system performance was demonstrated through reversed-phase gradient separations of tryptic protein digests at flow rates between 100 and 400 nL/min. Microfluidic integration of the nano-LC components enabled separations with subfemtomole detection sensitivity, minimal carryover, and robust and stable electrospray throughout the LC solvent gradient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.