Abstract

A novel microreactor for TiO 2-assisted photocatalysis in a microfluidic electrochemical cell was designed and constructed by a technology that can be reproduced in any chemical laboratory. The cell is obtained by a two-step thermal transfer of laser printed masks onto gold CD-Rs, a subtractive one to define the electrodes, and an additive one to define the channels. The TiO 2 nanoparticles are physically embedded in a gold matrix by electrodeposition from a solution of ions of this metal also containing colloidal suspension of anatase. This modification is conducted in the assembled microfluidic cell, with minimum material and time consumption. A 100 mW UV-LED (365 nm) is focused on the modified electrode and irradiation of the sample in the thin layer microreactor is conducted under stopped flow condition. The Cu–EDTA complex served as model system to demonstrate the in situ photocatalytic digestion of organic matter followed by the voltammetric determination of the metal ion in aqueous solution. The voltammetric wave of 1.0 × 10 −3 mol L −1 Cu(II) in acetate buffer (pH 4.7) at the gold electrode is suppressed by EDTA in the −0.3 to 0.8 vs. Ag/AgCl region. Irradiation of the bare electrode at 365 nm does not recover the wave, while irradiation of the TiO 2-modified gold electrode causes the recovery of the copper wave, proving the photocatalytic destruction of the chelating agent. Diffusion transport to/from the modified electrode rapidly enrolls the whole volume of sample in the thin-layer above the electrode (about 19 nL), so that in less than four minutes the recorded voltammogram become indistinguishable from that of a copper ion solution without EDTA. This novel in situ sample pre-treatment approach is very promising, deserving further research aiming its integration in micro-TAS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call