Abstract

This study reports the development of an on-chip enzyme-mediated primer extension process based on a microfluidic device with microbeads array for single-nucleotide discrimination using quantum dots as labels. The functionalized microbeads were independently introduced into the arrayed chambers using the loading chip slab. A single channel was used to generate weir structures to confine the microbeads and make the beads array accessible by microfluidics. The applied allele-specific primer extension method employed a nucleotide-degrading enzyme (apyrase) to achieve specific single-nucleotide detection. Based on the apyrase-mediated allele-specific primer extension with quantum dots as labels, on-chip single-nucleotide discrimination was demonstrated with high discrimination specificity and sensitivity (0.5pM, signal/noise>3) using synthesized target DNA. The chip-based signal enhancement for single-nucleotide discrimination resulted in 200 times higher sensitivity than that of an off-chip test. This microfluidic device successfully achieved simultaneous detection of two disease-associated single-nucleotide polymorphism sites using polymerase chain reaction products as target. This apyrase-mediated microfluidic primer extension approach combines the rapid binding kinetics of homogeneous assays of suspended microbeads array, the liquid handling capability of microfluidics, and the fluorescence detection sensitivity of quantum dots to provide a platform for single-base analysis with small reagent consumption, short assay time, and parallel detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.