Abstract

Ultrathin hydrogel films composed of cross-linked polymer networks swollen by water, with soft and moisturized features similar to biological tissue, play a vital role in flexible biosensors and wearable electronics. However, achieving efficient and continuous fabrication of such films remains a challenge. Here, we present a microfluidic-based strategy for the continuous fabrication of free-standing ultrathin hydrogel films by using laminar flow, which can be precisely controlled in the micrometer scale. Compared with conventional methods, the microfluidic-based method shows advantages in producing hydrogel films with a high homogeneity as well as maintaining the structural integrity, without the need of supporting substrates and sophisticated equipment. This strategy allows the precise control over the thickness of the hydrogel films ranging from 15 ± 0.2 to 39 ± 0.5 μm, by adjusting the height of the microfluidic channels, with predictable opportunities for scaling up. Therefore, our strategy provides a facile route to produce advanced thin polymer films in a universal, steerable, and scalable manner and will promote the applications of thin polymer films in biosensors and wearable electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.