Abstract

Cancer-derived circulating exosomes or nanoscale extracellular vesicles are emerging biomarkers for disease detection and treatment because of their cell-specific constituents and unique intercellular pathways. For efficient exosome isolation from bio-fluids, the design of high-affinity nanointerfaces is of great importance in the development of miniaturized systems for the collection of exosomes. Herein, we report peptide-functionalized nanowires as a biorecognition interface for the capture and release of cancer-derived exosomes within a microfluidic channel. Based on the amino-acid sequence of EWI-2 protein, a partial peptide that bound to the CD9 exosome marker and thus targeted cancer exosomes was screened. Linkage of the exosome-targeting peptide with a ZnO-binding sequence allowed one-step and reagent-free peptide modification of the ZnO nanowire array. As a result of peptide functionalization, the exosome-capturing ability of ZnO nanowires was significantly improved. Furthermore, the captured exosomes could be subsequently released from the nanowires under a neutral salt condition for downstream applications. This engineered surface that enhances the nanowires' efficiency in selective and controllable collection of cancer-derived exosomes provides an alternative foundation for developing microfluidic platforms for exosome-based diagnostics and therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.