Abstract

This article describes a novel microfluidic 3-dimensional encapsulation method via the self-assembling peptide hydrogel. The microfluidic immobilization strategies using a peptide hydrogel have been designed for microfluidic cell-based assays, cocultures, and biomimetic micro blood vessels. A sol-gel transition peptide hydrogel, Puramatrix, is adopted for use in the microfluidic device fabricated by photolithography and a poly(dimethylsiloxane) replica molding process. The peptide hydrogel was hydrodynamically focused by sheath flows of distilled water and cell culture media, and gelled by diffusion of media. After being transitioned from a sol to gel phase, the fabricated scaffold in the middle of the main channel was not washed away via fluid flows. The diffused chemicals in a stripe-shaped peptide scaffold of microchannel formed a linear concentration gradient within the scaffold. Based on application in an in vivo-like 3-dimensional microenvironment, this microfluidic system could be applied to cocultures, angiological research, cytotoxicity tests, cell viability monitoring, and continuous dose-response assays as well as drug-drug interaction studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.