Abstract

Summary Measurements of soil sorptivity ( S 0 ) and hydraulic conductivity ( K 0 ) are of paramount importance for many soil-related studies involving disciplines such as agriculture, forestry and hydrology. In the last two decades, the disc infiltrometer has become a very popular instrument for estimations of soil hydraulic properties. The previous paper in this series presented a new design of disc infiltrometer that directly estimates the transient flow of infiltration rate curves. The objective of this paper is to present a simple procedure for estimating K 0 and S 0 from the linearisation of the transient infiltration rate curve with respect to the inverse of the square root of time (IRC). The technique was tested in the laboratory on 1D sand columns and 1D and 3D 2-mm sieved loam soil columns and validated under field conditions on three different soil surfaces. The estimated K 0 and S 0 were subsequently compared to the corresponding values calculated with the Vandervaere et al. (2000) technique, which calculates the soil hydraulic parameters from the linearisation of the differential cumulative infiltration curve with respect to the square root of time (DCI). The results showed that the IRC method, with more significant linearised models and higher values of the coefficient of determination, allows more accurate estimation of K 0 and S 0 than the DCI technique. Field experiments demonstrate that the IRC procedure also makes it possible to detect and eliminate the effect of the sand contact layer commonly used in the disc infiltrometry technique. Comparison between the measured and the modelled cumulative infiltration curves for the K 0 and S 0 values estimated by the DCI and IRC methods in all the 1D and 3D laboratory experiments and field measurements shows that the IRC technique allowed better fittings between measured and modelled cumulative infiltration curves, which indicates better estimations of the soil hydraulic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.