Abstract
ABSTRACT In the present study, we developed several microflora communities that utilize digested sludge (DS), the recalcitrant waste product of anaerobic digestion, as a substrate for biogas production with the aim of their future application to DS recycling. Strict enrichment with DS as the sole nutrient source was introduced to culture microbes from soil and herbivore dung samples; microflora communities promoting stable levels of biogas production were obtained. The average methane and hydrogen yield from soil-derived microflora were 4.86 and 0.94 ml per 1.0 g DS, respectively. Notably, two microflora communities enriched from a riverbank sediment produced 20.79 ml and 14.10 ml methane from 1.0 g DS. By contrast, the methane and hydrogen yield for herbivore dung-derived microfloras were on average 1.31 ml and 1.87 ml per 1.0 g DS, respectively. Potent hydrogen-biogas producers were obtained from rabbit (4.12 ml per 1.0 g DS), goat (3.16 ml per 1.0 g DS), and sheep dung (2.52 ml per 1.0 g DS). The cultured microflora communities included representatives from the eubacterial genera, Clostridiaceae and Eubacteriaceae together with several anaerobic genera. Pseudomonas spp. are found in the riverbank sediment-derived microfloras, suggesting that the floras employ syntrophic acetate oxidation and hydrogentrophic methanogenesis (SAO-HM) pathway for methane production. The methanogenic microflora communities were dominated by bacteria from the Methanobacteriaceae family and unclassified archaea. Moreover, ascomycetous fungi and protists were found, implying that they act as oxygen scavengers and bacterial grazers, respectively. Enzymatic analysis suggested that the microfloras hydrolyze DS via cellulase, chitinase, and protease activities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.